CENTRE COURT APARTMENTS STATE COLLEGE, PA

Anthony Dente Thesis Tech Two Advisor: Ali Memari 11/05/07

Executive Summary

This report was conducted with the intent of comparing the current as build structural system of the Centre Court Apartments to four other structural systems applied to the same building. Following design of the system they will be compared and contrasted for their varying qualities of weight, constructability, thickness of system, MEP compatibility, fireproofing, and vibration effects. The original system was made of 8" Precast Hollow Core Plates toped with a 3"-5.5" layer of concrete bearing mostly on CMU's. The four structures this was compared against were:

- 1. Two Way Post Tension Slab
- 2. Composite Lightweight Concrete Slab on Steel Frame
- 3. Two Way Flat Slab
- 4. Waffle Slab

Each structure had many benefits such as the ease of construction of the hollow core planks and the waffle slabs, or the thinnest slab offered by the post tension system. Although, following the technical evaluation of all the structures against the criteria listed about it was found that the two systems worth exploring further in detail where the composite lightweight concrete slab on steel frame and the two-way flat slab. Both systems a very familiar in the industry and also lend themselves well to the short spanning varying geometry of the spans in the Centre Court Apartments.

Contents

Existing Structural System

Existing Structural Plan

Codes and References

Loads

Alternative Designs

Post Tension Two Way Flat Plate

Composite Lightweight Concrete Slab on Steel Frame

Two Way Flat Plate

Waffle Slab

Comparison

Conclusion

Appendix

Existing Structural System

Listed below are the prominent structural elements contained in Centre Court Apartments:

- 8" CMU exterior above grade and 10" CMU exterior below grade
 - Load bearing units conforming to ASTM C90
 - Net Compressive Stress = 3000 PSI
 - Above grade CMU's contain Dur-O-Wall every other course
 - Block cells with bars are grouted a minimum 2 courses below plank bearing
- 8" pre-cast hollow core planks
 - o Conform to latest edition of ACI 318
 - Steel bearing will contain weld plates spaced 4' O.C. max.
 - F'c=5000 PSI
- Steel beams and columns
 - Typical beam sizes: 12 X 26 and 14 X 43
 - Grade 50 or ASTM A992
 - Fabricated and erected in accordance to the latest edition of AISC specifications.
- Concrete columns, footings, and slabs
 - Mixed and placed in accordance with ACI 318 "Building Code Requirements for Concrete"
 - Footings and slabs f'c = 3000
 - Columns f'c =4000

The load-bearing CMU exterior walls dominate the structural design. This system also crosses north to south at particular portions of the interior building in order to be the primary lateral force resisting system. This structure has a number of benefits in the Centre Court Apartments. The added convenience of bearing the pre-cast hollow core slabs. Pre-cast hollow core concrete slabs make up at least 90% of all floor slabs in the building and the concrete to concrete block connection cuts down on the number of bearing plates that would be needed if the number of slab to steel connections were increased.

Another benefit of this system is the simplification of the beam to column connections throughout the building. Since no moment frames are required, all moment connections have been completely elevated from the building. There

Anthony Dente AE 481

are also two non-structural benefits to the CMU design: the fire rating requirements for apartment buildings and the way it compliments the application of the aesthetic stucco applied to the exterior of the building.

The remaining interior loads are carried by a series of wide flange beams, which distribute that load to steel columns in the top five floors. The bottom two levels of parking deck then convert to concrete columns, which at the end drop the load onto the 6' X 8' spread footings.

Advantages and disadvantages to this system:

Being that the structure is an apartment complex architectural freedom is very important. With the precast hollow core slab design that bears a great deal on the exterior walls the intrusion of columns is decreased greatly. The Hollow core slabs also decrease on site construction time by a great deal, although a longer lead-time is often a direct cost of this trait. Including the 3-5.5" concrete topping the floor structural system can be 13.5" thick at points, which is a moderately thick floor structure for this building.

The Hollow core slabs in conjunction with the CMU wall offer excellent fire protection benefits. This combination also aids well to noise dampening witch are both strong benefits to an apartment complex. Studies also show that insurance rates for buildings incorporating either of these technologies tend to be less than other structural options.

Existing Structural Plan

Codes and References

- The International Building Code 2003
- The American Concrete Institute
 - Section 530.1: Masonry
- The American Institute of Steel Construction
- CRSI 2002: Concrete Reinforcing Steel Institute
- United Steel Deck Design Manual 2002

Loads

Gravity Loads have been calculated in accordance with ASCE 7-05 with the Live Loads interpreted from section four. Assumptions were made for proper distribution of Gravity Loads.

Dead Load

60	psf
150	pcf
15	psf
10	psf
5	psf
38	psf
60	psf
8	psf
	60 150 15 10 5 38 60 8

Live Loads

Corridors	100	psf
Garages	40	psf
Private Rooms	40	psf
Public Rooms	100	psf
Roof	20	psf
Snow	21	psf

Alternative Designs

There where four alternative deign methods tested for this technical assignment, post tensioned two way flat plate, composite light weight concrete slab on steel frame, two way flat slab, and a waffle slab deign. The strict architectural layout minimizes the diversity of column arrangement strategies. The plans bellow show the most functional column layout applicable to a redesign of the system. All Concrete columns in the bellow plans are taken as 20"X 20" to keep uniformity with the parking deck bellow.

Concrete Design:

Post Tensioned 2 Way Flat Plate

Post Tension concrete is traditionally used to span long distances with minimal thickness increases and also to minimize visual cracking in such spans. Although, due to the architectural layout of the Centre Court Apartments discussed above this system was tested over moderately sized spans with an attempt to see if the decreases in thickness would be worth the costs of this system even with the shorter span lengths.

Advantages and Disadvantages to this system.

The slab analysis resulted in a 5 in slab. This is severely less that the current system although due to this extreme decrease in depth the punching shear surrounding the columns requires extra shear reinforcement which will certainly counteract some of the savings due to deceased amount of concrete. From a construction standpoint not all contractors work well and are comfortable with post tension slabs. If not installed correctly the extreme force applied to this system shortly after construction can result in very dangerous situations. Although as long as an expedited crew is obtained it should be a very viable solution.

Composite Light Weight Concrete Slab on Steel Frame

The composite lightweight slab on steel frame system is a standard system in the industry. The system can adapt to all kinds of floor framing layouts with ease, which obviously benefits the Centre Court Apartments architectural plan. This system was analyzed with an attempt to use the moderately thin slab it affords in conjunction with lightweight concrete to not only minimize floor to floor height but more importantly the dead load of the building as a whole.

Advantages and disadvantages to this system:

Many contractors work well with the slab on steel frame system because it is very commonplace in the industry. The slab depth came out to be 5.25" being only .25" thicker than the post tension design. This along with the 115pcf lightweight concrete does a lot in decreasing the load of the slab bearing on the structure. Vibration can be a concern with the steel system and should b given optimal attention due to its high level of impotence in an apartment complex such as this and additional fireproofing with certainly be needed to cover the steel. Those disadvantages aside the concrete slab on steel frame appears to be a viable alternative.

2 Way Flat Plate Slab

The two way flat plate design is most likely the most convent and feasible for the short span lengths of the Centre Court Apartments. The design hopes to only increase the slab thickness slightly from the post tension design and steel deck slab design while taking advantage of the short spans by alleviating the need for drop panels or additional shear reinforcement. The Equivalent frame method was used in analyzing the system and although the slab could have shortened it's thickness in the interior spans, the change was not that drastic and the design was kept constant for ease of construction.

Advantages and disadvantages of this system:

Although assembly and disassembly of formwork for a job of this size can be very timely and costly to a contractor and owner will once again rarely find a contractor who's team doesn't have the ability or is not familiar with this system. No additional fireproofing is needed and the vibration effects are also much better than that of the slab on steel decking system. The 6.5" depth is by no means in a situation to cause building height issues and because the punching shear design does not require drop panels the MEP system can scale along the system with ease.

Waffle Flat Slab

Waffle slab systems are often incorporated because although they often add a lot of thickness compared to their alternatives they, more times than not will decrease the weight of the structure dramatically. The system is also most applicable over large spans, which, as discussed above, is definitely not the case with the Centre Court Apartments. The system was selected through design tables out of the Concrete Reinforcing Steel Institute Design Guide of 2002. The slabs have 19" x 19" voids with 5" ribs at 24" O.C.. The rib depth also came out to be 8" with a slab depth of 3".

Advantages and disadvantages to this system:

Waffle slabs have very similar characteristics to the existing structure of hollow core floor planks in the area of construction and lead-time. That being, simpler and faster construction methods as compared to other systems although a longer setting-on-site time due to the nature of the product. Waffle slabs often compliments MEP systems well and the vibration effects that are mitigated by such an assembly are very good as well. On the other hand waffle slab construction is not typically designed for a building whose bays are constantly alternating in size. I designed the slab for the maximum span although when all is said and done, if preferred, many sizes and shapes of waffle slabs could technically be incorporated in this design. At least to alternative sizes would be practical from a construction standpoint. I also found that the weight saved by the system was not significant enough to justify the increase in thickness.

Comparison

	Hollow Core Planks	Comp. Slab on Steel Deck	2 Way Flat Plate	Post T.	Waffle Slab
Weight	96 psf	62 psf	81 psf	62.5 psf	95.7 psf
Thickness	13.5 "	5.25 "	6.5 "	5 "	11 "
Vibration	no	yes	no	no	no
Additional Fire					
Proofing	no	yes	no	no	no
Const. Difficulties	no	no	no	yes	уе
Lead Time	yes	a little	no	no	yes
Amount of Form Work Acceptable	none	good amount	a lot	a lot	none
Alternative		yes	yes	no	no

Conclusion

Following analysis of the 5 methods, four alternatives and one existing I found that each of them have many individual advantages but also drawbacks as compared to the other methods. The thinnest slab was obtained with Post tension, although the savings in the end where not that significant compared to the other methods and the technical experience needed on such a project most likely is not necessary for this building with it's smaller spans. The Waffle slab did not end up saving weight in the long run and as well as the existing structure it's thickness and lead time were not completely justified in the end. The ease of construction and adaptability to the span geometry of the slab on steel decking gave positive results and is worth continuing research on in the future. Although the final conclusion stands with the two way flat plate slab. This system is relatively thin, light, easy to construct, and won't be terribly expensive. It can take economic benefit from the varying slab size changes and at this point will be the top selection for further review.

Appendíx

Post Tension Two Way Flat Plate

Composite Lightweight Concrete Slab on Steel Frame

Two Way Flat Plate

Waffle Slab

1		
0	POST TENSIONED ZWAY FLAT PLATE	
	20 x 20 col's 5'2 = 3,000 PS : 5 y = 60 HSI 3PU = 270 HSI 1/2" DIMMETER TENDONS AT = 0.53 M ²	
	16' MAX SPAN SPAN/ PEPTH RATIO = 45	
	45 = 4.26 => TRY 5" SLAB	
5 14" #		
	Q = 5 - 2(1.25) = 2.50" I CLR NT TOP & BOTTOM FOR 2 HR FIRE & ATING	
	LONDS	
	$DL: SLAB - S(\pi) SO = C2.5 PSF$ $MEP \qquad IO PSF$	
	PARTITIONS IS PSF MISC SPSF	
	92.5 PSF	
	LL: HOPSE	
	BANDED TENDONS IN THE EAST-WEST DIR. LOIFDEM TENDONS IN THE NORTH-SOUTH	
	$W_{PKE} = 0.9(62.5) = 56.25 PSF$ $W_{NET} = 132.5 - 56.25 = 76.25 PSF$	
	Mpre = 56.25 (16) = 1,800 14	
	$F = \frac{N_{IPRE}}{a} = \frac{180 - 6(3)}{2.5} = 8.46$ M	
f	FA = 8.46(1000) = 141 PS1	
	A= 5"(12" STEID) = 60 IN2	
	BUNDLES AT STRIP IN E-W DIRECTION	
0	Mo= (0.07625)(16')2 = 2.41 M	
	M = .65(2.4) = 1.55 14	
	N+= .35(2.4)= 0.84 "	

2	
0	AVG STRESSES
	$S = 2(5^2) = 50 \text{ m}^3$
	$N_{10} SPKN E NOS. 5E* 3-VFZ = 124.35E = 0.455% = 1350$
	$M_{u}^{\circ} = -141PS1 \pm \frac{1.56(12)^{(1000)}}{50} = 233.4 \le 328.63$
	$M_{\mu}^{+} = 5 = -141PS1 \pm \frac{0.84(12)(1000)}{50} = 60 \le 124$
	BUNDLES STRIPS IN E-W F= 8.464+1 (15) = 135.36
	NT = 135.36 (270)(0.153) = 3.28 - USE LI TENDONS ENCH WAY
	NORMAL REINFORCEMENT DESIGN
	PL: SLAB 0.1(62.5) = 6.25 PSF NOP, PART, MISC = 30 PSF 36.25 PSF
	LL: 40 PSF
	$W_{u=1,2}(36.25) + 1.6(40) = 107.5$
	$M_{0} = \frac{W_{u}L_{z}L_{0}^{2}}{8} = \frac{107.5(16')(16 - \frac{20}{32})^{2}}{8} = 44.17^{14}$
	Mu = .65(44.17) = 28.7" Mu = .35(44.17) = 15.5"
	$CSM_{u}^{r} = .75(28.7) = 21.53$ MSM_{u}^{r} = .25(28.7) = 7.18
	(5 M.T63 (15.5) = 9.77 MS M.T = .37 (15.5) - 5.74

2						
	Assunding #	U BARS E	ACH WAY			
		Mu-		M14 +		
0	M	C5	MS	972	MS	
	DEPTH	3.75"	3.75"	3.75"	3.75"	$b = \frac{16(10)}{2} = 46$
	Mn = Mu/a FLEYGRAF RESIST.	23.9	7.98	10,86	6.00	
	FACTOR R= Mn(12000) bd2	212.581	70.93 PSI	96.53m	56.71P31	
	ROW RATIO TABLE A.S	0.00375	0.00125	0.00175	0.0012	
	As=sed	1.35	0.45	0.63	0.432	
	ASMIN = 0.0026 T	0.96 inz	0.96 102	0.96:42	0,96 in 2	
	NUBER OF BARS N= Asks(#4)	6.7537	2.25+3	3.15->4	2.16->3	
	MIN BARS DE	9.6-210	10	10	10	-> GOUERNS
	SPACING 5-910	9.5"	9.5"	9.5"	9.5"	
_	REINFOREMENT	#4@ 9.500				

The **Deck Section Properties** are per foot of width. The I value is for positive bending (in.¹); t is the gage thickness in inches; we is the weight in pounds per square foot; **S**_p and **S**_n are the section moduli for positive and negative bending (in.¹); **R**_s and **\phi**, are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, ϕ **M**_n.

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. ϕM_{nf} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). A_c is the area of concrete available to resist shear, in.² per foot of width. Vol. is the volume of concrete in $ft.^3 per\,ft.^2$ needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.². S_c is the section modulus of the "cracked" concrete composite slab; in.³ per foot of width. I_{av} is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The Iav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10⁶ psi. ϕ M_{no} is the factored resisting moment of the composite slab if there are <u>no studs</u> on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). ϕ V_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not next three columns list the **maximum unshored spans** in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. ${\bf A}_{\rm www}$ is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

				1			D AV stude						
Gage			As		Sp	S,	R	¢۷ _n	studs				
22	0.0295	15	0.440	0.338	0.284	0.302	714	1990	0.43				
20	0.0259	1.8	0.540	0.420	0.367	0.387	1010	2410	0.52				
10	0.0330	21	0.630	0.490	0.445	0.458	1330	2810	0.61				
19	0.0474	24	0.710	0.560	0.523	0.529	1680	3180	0.69				
16	0.0598	31	0.900	0.700	0.654	0.654	2470	3990	0.87				

COMPOSITE PROPERTIES

	Slah	AM	Δ	Vol	w	S.		ó M	όV	Max. u	nshored s	pans, ft.	Amat
	Depth	ink	in2	ft3/ft2	nsf	in ³	in ⁴	in.k	lbs.	1span	2span	3span	
	4.50	40.27	32.6	0.292	34	1.00	4.4	28.13	4270	6.32	8.46	8.56	0.023
1000	4.50	40.27	37.5	0.232	38	1 18	6.0	33.12	4610	6.03	8.09	8.19	0.027
-	5.00	40.44	40.0	0.354	41	1.27	6.9	35.69	4790	5.90	7.93	8.02	0.029
×	5.25	49.00	40.0	0.375	43	1.36	7.9	38.29	4970	5.77	7.77	7.86	0.032
No.	0.00	52.01	42.0	0.373	45	1.55	10.1	43.58	5340	5.55	7.49	7.58	0.036
B	0.00	00.70	40.0	0.417	50	1.65	11.3	46.26	5540	5.45	7.36	7.45	0.038
~	0.20	01.0/	50.0	0.450	53	1.05	127	48.97	5730	5.36	7.24	7.32	0.041
2	0.50	74.40	53.0 50.5	0.400	58	1.75	15.7	54.44	6150	5.18	7.01	7.10	0.045
-	7.00	71.12	59.5	0.500	00	2.04	17.4	57.20	6310	5.10	6.91	6.99	0.047
	1.25	74.21	64.2	0.521	62	2.04	19.2	59.97	6480	5.05	6.81	6.89	0.050
	7.50	11.29	04.3	0.042	24	1 20	4.8	33.77	4560	7.42	9.71	10.03	0.023
	4.50	48.60	32.0	0.292	34	1.20	6.5	30.80	5030	7.07	9.28	9.59	0.027
-	5.00	56.18	31.5	0.333	30	4.50	7.4	42.04	5210	6.91	9.09	9.39	0.029
e le	5.25	59.96	40.0	0.354	41	1.55	0.5	42.91	5200	6.76	8.91	9.20	0.032
22	5.50	63.75	42.6	0.3/5	43	1.04	10.0	40.05	5760	6.49	8.57	8.86	0.036
×	6.00	71.32	48.0	0.417	48	1.07	10.9	52.47	5060	6.37	8.42	8.70	0.038
0,	6.25	75.11	50.8	0.438	50	1.99	12.2	00.73	0900	6.36	9.27	8.55	0.041
0	6.50	78.90	53.6	0.458	53	2.10	13./	09.02	6130	6.05	9.00	8.27	0.045
2	7.00	86.47	59.5	0.500	58	2.34	10,9	10.00	0370	0.05	7.07	0.4.4	0.047
	7.25	90.26	61.9	0.521	60	2.46	18.7	69.03	0/30	5.95	7.75	0.14	0.050
1	7.50	94.05	64.3	0.542	62	2.58	20.6	(2.41	6900	0.05	1.10	10.01	0.023
	4.50	55.85	32.6	0.292	34	1.38	5.1	38.6/	4000	0.30	10.55	10.91	0.027
	5.00	64.68	37.5	0.333	- 20	1.63	8.0	45.61	5741	7 90	0.00	40.00	0.020
Ð	5.25	69.10	40.0	0.354	41	1.75	7.9	49.19	5590	1.10	9.09	10.22	0.023
D	5.50	73.52	42.6	0.375	43	1.88	9.0	52.83	5790	7.59	9.09	10.01	0.032
<u>m</u>	6.00	82.35	48.0	0.417	48	2.15	11.6	60.25	6160	7.29	9.33	9.04	0.030
0,	6.25	86.77	50.8	0.438	50	2.28	13.0	64.02	6360	7.15	9,16	9.4/	0.030
6	6.50	91.19	53.6	0.458	53	2.42	14.5	67.83	6550	7.02	9.00	9.30	0.041
-	7.00	100.03	59.5	0.500	58	2.69	17.9	75.53	6970	6.78	8.71	9.00	0.045
	7.25	104.44	61.9	0.521	60	2.83	19.8	79.42	7130	6.67	8,57	8.86	0.04/
	7.50	108.86	64.3	0.542	62	2.97	21.8	83.33	7300	6.59	8.44	8.72	0.050
	4.50	62.08	32.6	0.292	34	1.53	5.4	42.99	4560	9.20	11.33	11.71	0.023
	5.00	72.04	37.5	0.333	38	1.81	7.3	50.72	5240	8.75	10.84	11.20	0.027
0	5.25	77.02	40.0	0.354	41	1.95	8.3	54.72	5590	8.54	10.62	10.97	0.029
5	5.50	82.00	42.6	0.375	43	2.10	9.5	58.78	5950	8.35	10.41	10.76	0.032
D	6.00	91.95	48.0	0.417	48	2.39	12.1	67.07	6530	8.01	10.02	10.36	0.036
07	6.25	96.93	50.8	0.438	50	2.54	13.6	71.29	6730	7.86	9.84	10.17	0.038
m	6.50	101.91	53.6	0.458	53	2.69	15.2	75.55	6920	7.71	9.68	10.00	0.041
-	7.00	111.87	59.5	0.500	58	3.00	18.8	84.17	7340	7.44	9.36	9.67	0.045
	7.25	116.85	61.9	0.521	60	3.16	20.7	88.52	7500	7.32	9.21	9.52	0.047
	7.50	121.83	64.3	0.542	62	3.31	22.8	92.91	7670	7.24	9.07	9.38	0.050
-	4.50	62.08	32.6	0.292	34	1.88	6.0	42.99	4560	10.49	12.57	12.99	0.023
	5.00	72.04	37.5	0.333	38	2.22	8.0	50.72	5240	9.96	12.03	12.43	0.027
0	5.25	77.02	40.0	0.354	41	2.40	9.2	54.72	5590	9.72	11.78	12.18	0.029
0	5.50	82.00	42.6	0.375	43	2.58	10.5	58.78	5950	9.50	11.55	11.94	0.032
n l	6.00	01.05	48.0	0.417	48	2.94	13.4	67.07	6700	9.11	11.13	11.50	0.036
0	6.00	06.03	50.8	0.438	50	3.13	15.0	71.29	7090	8.93	10.94	11.30	0.038
10	6.50	101.93	53.6	0.458	53	3.32	16.8	75.55	7490	8.76	10.75	11.11	0.041
0	7.00	111.91	59.5	0.500	58	3.71	20.6	84.17	8150	8.45	10.40	10.75	0.045
	00.7	111.0/	39.0	0.000		0.71	20.0	00.50	0010	0.04	40.04	40.50	0.047
-	7.25	116 95	61.0	0.521	60	3.90	22.8	88.52	8310	8.31	10.24	10.59	0.047

2" LOK-FLOOR 38

Anthony Dente AE 481

Centre Court Apartment State College, PA

	Slab	oMn in k	6.00	6.50	7.00	L, Unif 7.50	orm Li 8.00	ve Sei 8.50	vice L 9.00	.oads, 9.50	psf * 10.00	10.50	11.00	11.50	12.00	IRFD
2	4.50 5.00	40.27 46.44	400 400	370 400	315 365	270 315	235 270	205 240	180 210	160 185	140 165	125 145	110 130	100 115	90 105	
Bag	5.25 5.50	49.53 52.61	400	400	390 400	335	290 310	255 270 200	225	210	1/5 185 210	155	140	125	120	1 STUD/FT.
Y	6.00	58.78 61.87	400	400	400	400	345	320	205	245	210	195	175	155	140	
	6.50	64.95 71.12	400	400	400	400 400 225	400	365	295 320 225	285	250	225	200	180	160 115	NO STUDS
ge	4.50 5.00	46.00 56.18	400	400	400	385	335	295	260	230	205	180	165 175	145 155	130 140	-
ga	5.50	63.75 71.32	400	400	400	400 400	380 400	335 375	295 330	260 290	230 260	205 230	185 210	165 185	150 170	* The Uniform Live Loads are based on
2C	6.25	75.11 78.90	400	400	400 400	400 400	400 400	395 400	345 365	310 325	275 290	245 255	220 230	200 210	180 185	the LRFD equation $\phi M_n = (1.6L + 1.2D)/^2/8$. Although there are other load combina-
	7.00	86.47 55.85	400 400	400 400	400 400	400 385	400 335	400 295	400 260	355 230	315 205	280 185	255 165	230 150	205 130	tions that may require investigation, this
age	5.00 5.25	64.68 69.10	400 400	400 400	400 400	400 400	390 400	345 365	300 325	270 285	240 255	215	190 205	175	155	equation assumes there is no negative
9	5.50 6.00	73.52 82.35	400 400	400 400	400 400	400 400	400	390 400	345 385	305 345	270 305	245	220	200	200	bending reinforcement over the beams and therefore each composite slab is a
2	6.25 6.50	86.77 91.19	400	400	400	400	400	400	400	360	320	305	275	235	225	single span. Two sets of values are
1)	4.50	100.03 62.08	400	400	400	400	375	330	290	260	230	205	180	155	135	uniform load when the full required
age	5.00	77.02	400	400	400	400	400	400	365	325	290	260	235	210 225	190 205	number of studs is present; ϕ M _{no} is used to calculate the load when no studs
5	6.00	91.95	400	400	400	400	400	400	400	385 400	345 365	310 325	280 295	250 265	230 240	are present. A straight line interpolation
Ĩ	6.50	101.91	400	400	400	400	400	400 400	400	400 400	385	345 380	310 340	280 310	255 280	studs is between zero and the required
e	4.50	62.08 72.04	400	400 400	400 400	400 400	375 400	330 385	290 340	260 300	230 270	205 240	180 220	155 195	135 180	number needed to develop the "full" factored moment. The tabulated loads
Beg	5.25 5.50	77.02 82.00	400 400	400 400	400 400	400 400	400 400	400	365 390	325 345	290 305	260 275	235 250	210 225	190 205	are checked for shear controlling (it
2	6.00 6.25	91.95 96.93	400 400	400 400	400	400	400	400	400	385	345 365	310 325	280	250	230 240	load deflection of 1/360 of the span.
-	6.50 7.00	101.91 111.87	400 400	400 400	400	400	400	400	400	400	385	345	310 340 70	310	255	An upper limit of 400 psf has been
Ð	4.50	28.13 33.12	300 355	250 295	215	180 215	155	135	120	105	90 110	95	85	75	65 70	applied to the tabulated loads. This has been done to quard against equating
	5.25	35.69	380 400	345	290	235	200	115	165	145	125	110	100	85	75	large concentrated to uniform loads.
3	6.00	45.36	400	400	355	305	260	230	200	175	155	135	120 130	105 115	95 100	analysis and design to take care of
-	7.00	40.97 54.44 33.77	400	400	400	360	310	270	235	205	185 115	160 100	145 90	125 80	115 70	servicibility requirements not covered
30	5.00	39.80	400	360	310 335	265 285	230 245	200 215	175 190	155 165	135 145	120 130	105 115	95 105	85 90	On the other hand, for any load
69	5.50	46.05	400	400 400	360 400	305 350	265 305	230 265	205 235	180 205	160 180	140 160	125 145	110 130	100 115	composite properties can be used in the
20	6.25 6.50	55.73 59.02	400 400	400 400	400 400	375 395	325 345	280 300	250 265	220 230	195 205	170 180	155 160	135 145	120 130	calculations.
	7.00	65.67 38.67	400 400	400 355	400 300	400 260	385 225	<u>335</u> 195	295 170	260 150	230 135	205 120	180 105	160 95	145 85	Welded wire fabric in the required
	5.00 5.25	45.61 49.19	400 400	400	360 385	310 330	265 290	235 250	205 220	180	160 175	140 155	125 135	115 125	100	If welded wire fabric is not present,
8	5.50 6.00	52.83 60.25	400	400 400	400 400	355 400	310 355	270 310	240	210	185 215	165	150	130	120	deduct 10% from the listed loads.
25	6.25 6.50	64.02 67.83	400	400	400	400	<u>375</u> 400	330	310	255	225	205	190	175	155	Refer to the example problems for the
(1)	4.50	(5.53 42.99	400	400 395	340	290	255	220	345 195 230	170 205	150	135	120	110	95 115	use of the tables.
be	5.00	54.72	400 400	400	400	345	325	285	250	200	195	175	155	140	125	
57	5.50 6.00	58.78 67.07 71.29	400	400	400	400	400	350	305	270	240	215	195 205	175 185	155 165	
Ě	6.50	75.55	400	400	400	400	400	395 400	345	305 345	275	245 275	220 245	195 220	175 200	
8	4.50	42.99	400	395	340 400	290 345	255 300	220 260	195 230	170 205	150 180	135 160	120 145	110 130	95 115	
20	5.25	54.72 58.78	400	400	400	375 400	325 350	285 305	250 270	220 235	195 210	175 190	155 170	140 150	125 135	
0	6.00 6.25	67.07 71.29	400 400	400 400	400 400	400 400	400 400	350 370	305 325	270 290	240 255	215 230	195 205	175 185	155	
-	6.50 7.00	75.55 84.17	400 400	400 400	400 400	400 400	400 400	395 400	345 390	305 345	275 305	245 275	220 245	195 220	175 200	
															1	Z LUK-FLUUK

0 ZWAY FLAT PLATE SLAD P 9 9 de 7' for 16' 11 12' a 12' 6 4 16' SLAB FHICKNESS $E_X = \frac{R_M}{30} = \frac{I(6(12) - 2\%)}{30} = 6.34 = 6.5''$ $INT = \frac{R_M}{35} = 5.76 \implies USE 6.5'' TO WEEP UNIFORMITY$ PL: 6.8/2(150) = 81.25SI = 30.00 1.2(111.25) + 1.6(100) = 2.93.5 PSF111.25 $I_{s} = \frac{16(12)(6.5^{3})}{18} = \frac{4394}{4394} = 131.2 Ec^{10} IBRAD$ $R_{s}(nv) = \frac{4E_{v}L_{v}}{2n^{-c}\chi} = \frac{4E_{v}(4394)}{12(n^{2})^{-2}\chi} = 131.2 Ec^{10} IBRAD$ Hs(16)= UE. (4394) = 96.6 Ec hs(+)= 4 E(4394) 7(12)- 2% = 237.5EL $ZO_{r} ZO_{col} \quad h_{c} = \frac{4 E_{c} I_{c}}{1 - 2 \epsilon} = \frac{4 E_{c} (20^{4} / 2)}{(12)9.6 - 2(2.5)} = 521.9E_{c}$ FLR H= 9.66 FT $C = (1 + .63 (\frac{6.7}{20})) \frac{6.5^{3}(20)}{3} = 2205.7$ $h_{E} = \frac{9E_{c}C}{C_{2}(1-C_{2}K_{c})} = \frac{9E_{c}(2205.7)}{16(12)(1-2\%(12))} = 115.4E_{c}$ Kee = 2,521.9Ee + 2×115.4Ee => Viec = 189 Ee DISTRIBUTION FACTORS DFA-A, 5-5 = 131.26: = 0,410 DFB-B,I-I = 131.2 131.2+96.6+189 = 0.315 DF66, H-H = 96.6 131.2+96.6+199 = 0.232 DF0-0,66 = 96.6 96.6 - 237.8 + 189 = 0.185 DFEE, F.F = 237.5 966+237.5+189 = 0.454.

Anthony Dente AE 481

3					
	18.51 19.5 97.4	29.9	-20.4 74 54.0	29.9 5 18.5	18.4
	$\frac{WR^{n}}{8} \stackrel{1-2}{\Rightarrow} \frac{\frac{2}{293.4}(16)(12-2)}{8}$ $\frac{2-3, 4-7}{8}$ $\frac{293.4(16)(16-2)}{8}$ $3-4(16)(2-2)$ $\frac{293.4(16)(2-2)}{8}$	$\left(\frac{20}{2}\right)^{2} = 62.66$ $\left(\frac{20}{2}\right)^{2} = 120.6'$ $\left(\frac{20}{2}\right)^{2} = 16.7$	1K 4 1 1		
	$M_{AX} M_{u} = 97.4$ $M_{AX} M_{u} = 29.9$ $(S M_{u} = 0.75 (97.4))$ $MS M_{u} = 0.25 (97.4)$ $M_{u} = 0.25 (97.4)$	= 73.1 "" - 24.0 "M	CSM4" = MSM4" =	0,6 (29.9) = 17 0.4 (29.9) = 11 M.1	.94 in .96
	DESTAN REINTORCE.	(5	Ms	CS	Ms
	MOMENTS	73.1 KK	24.414	17.94 14	11.96 19
	EFF DOMH (75"CLR) ASSUME	+ 112 "	E 4275"	5. 4375"	5.4375"
	# 5 BARS BOTH DIRECTOR	3,43,75	771.1	19 9 14	13.3 "
16 (12) - 96	Mn= Mu/d	309	L7.1	75.99	50.6
2	R= 16d R. P. P. (FIR) ELS)	0.0055	0.0053	6.00125	0,0007
	STEEL ATIES Phod (4)	7.87	2.77	0.65	0.37
	MIN STEEL AREA ASMIN = 0.0018 bt (11)	1.13	1.13	1.13	1.13
	# OF BARS	(#5)	8.93	# 4 13 AR) 3.25	(#4) 1.85
	N= As /As DAR	9.26 => 10 13 140	9 BARS	YBARS	USE 4 BARS
	MIN # OF BARS NAIN = 6/2 t	7.38 = 8	BARS		
	SPACING OF BARS S= 6/N	9.6"	FOR UNIFORMITY	24"	24"
	FINAL REINFORCE MENT	#5@ 9.5	# 50 9.5"	# 4 @ 24"	#4@ Z4" ,
	SHEAR REINF. CH	ECM			
	1 = 2.72 bo= 1	25,44+4 = 10	2		
	Vu = 293, 5 PSF (167	(- 22)= 73,	962103		
	Ve= 0.75(4)- J3000	(102) (5.4375	5) = 92181	> Vu -> No Er Requ	TRA SHEAR REN. D

Centre Court Apartment State College, PA

			Span CC.	$\ell_1 = \ell_2$ (ft)	Total Depth = 11 in.	14'- 0" D= 6.417 RIB NOT ON COLUMN LINE 0.599 CF/SF	16'. N	D= 6.417	RIB NOT ON COLUMN LINE 0.582 CF/SF	18'- 0" D= 6.417 RIB NOT ON COLUMN LINE 0.571 CF/SF	20'- 0" D= 8.417 RIB ON COLUIMN LINE 0.590 CF/SF	22'- 0" D= 8.417 RIB ON COLUMN LINE 0.579 CF/SF
			Factored Super-	imposed Load (psf)	RI	150 200 300 400 400	60	100	200 300 400	4000000 3000000000000000000000000000000	200 200 300 400 400 400	200 200 200 200 200 200 200 200 200 200
			E	Steel (psf)	Depth	225 225 225 225 225 225 225	05.0	2.30	230 239 239 247	225 225 258 258 284	2.28 2.36 2.45 2.45 3.48	2.25 2.25 2.26 3.26 3.26 3.26
		Squ		$\begin{array}{c} c_1 = c_2 \\ (in.) \end{array}$	= 8 in.	0000000	10	12	22222	2222222	445 44 44 44 44 44 44 44 44 44 44 44 44	22222 * * * *
		are Edge		¥		0.629 0.636 0.656 0.677 0.777 0.777	0.694	0.716	0.759 0.761 0.806 0.850	0.734 0.760 0.787 0.787 0.787 0.787 0.787 0.787 0.865	0.788 0.816 0.872 0.872 0.630 0.627	0.816 0.850 0.885 0.914 0.627
sou	-	Column	107	(2) Stirrups	Total Slab							200
ARE			Top	No	Depth = 3	10-#5 10-#5 10-#5 10-#5 10-#5	12-#5	12-#5	12-#5 12-#5 12-#5 12-#5	13-# 13-# 13-# 13-# 13-# 13-# 13-# 13-#	1999年1999年1999年1999年1999年1999年1999年199	+ 101 101 101 101 101 101 101 101 101 10
EDGE		0		+ Rib	in.	000000	4 0+	0+	0000	000000	000000	000000
PANE	Re	Reinforcing Column Strip	Bottom s Bars per F	4 21- 4 21- 4 21- 4 21- 24- 24- 24- 24- 24- 24- 24- 24- 24- 24	4 2-4	4 2-	4 1-#4 ar	4 4 2- 4 4 1-#5 ar 1-#5 ar 1-#5 ar	55 1#4 at 1#6 at 1#6 at	2000 1420 1450 1450 1450 1450 1450 1450 1450 145		
ST	inforcing			er Rib		*****	14	14	#4 rd 1-#5 #5	#4 #4 rd 1-#5 rd 1-#6 #6 #6	#4 #4 #5 #5 #6 #6 rd 1-#7	#4 #5 md 1-#6 nd 1-#7
	ing Bars-Eac		Top	No size		10 ± 5 10 ± 5 10 ± 5 10 ± 5 10 ± 5 10 ± 5	12-#5	12-#5	12-#5 12-#5 12-#5	13-#5 13-#5 13-#5 13-#5 13-#5	15-#5 15-#5 15-#5 15-#5 15-#5	16-#5 16-#5 16-#5 16-#5 15-#6 15-#6
	-Each			No. Ribs		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	4	ক ব ব ব	ດດດດດດ	ດາດາດາດາດາດາ	න හ හ හ හ හ
	Directi	Midd	Sottom	Long Bars		24 24 24 24 24 24 24 24 24	#4	#4	1 1 1 1	24 24 24 24 24 24 24 24	######################################	## # # # # # #
	uo	le Strip		Short Bars		24 24 24 24 24 24 24 24	14	44 7#	1111	#44 #44 #5	#4 #4 8 # 8 # 8 #	****
			Top	No size		4-#5 4-#5 4-#5 4-#5 4-#5 4-#5	2#-9	5#5	54-2 54-2 54-2	5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	6-#5 6-#5 6-#5 6-#5 6-#5 6-#5	7-#5 7-#5 7-#5 7-#5 7-#5 7-#5
		M	W	Edge (ft-k)		40 224 13 13 14 14 13 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	19	25	88 83	28 36 53 70 87	39 50 57 74 720	52 88 88 88 88 88 89 89 89 89 89 89 89 89
		oments	M+	Bot. (ft-k)		26 60 84 84 84 87 107	38	52	126 126	55 75 103 130 233 233	78 105 145 182 254 323	103 140 243 337 302
			M	Int. (ft-k)		34 55 66 68 68 68 107	52	67	99 130 162	74 97 120 143 188 234	104 136 199 262 323	139 182 182 267 349 349
			(1)	Steel (psf)	Total [220 220 220 220 220 220 220	2.26	2.26	226	221 221 221 223 236 249	225 225 225 225 225 239 239	223 223 236 281 281
		Interio		$\begin{array}{l} c_{1} \equiv c_{2} \\ (in.) \end{array}$	Depth =	2222222	12	12	2000	2222222	222222	555555 * * *
squ		iquare or Column	(6)	Stirrups	11 in.				3 \$ 4 1	3 S 4 1 3 S 4 1	3 S 4 1 3 S 4 1	3 S 4 1 3 S 4 1
ARE				No. Ribs	Rit	44444	4	4	1444	44444	ດດດວດດວ	ເດເດເດເດເດ
INTERIO	Reinforcin	Column Strip	Bottom	Bars per Rib	o Depth = 8 in.	2-#4 2-#4 2-#4 2-#4 2-#4	2-#4	2-#4	2-#4 2-#4 2-#4	2-#4 2-#4 2-#4 2-#4 1-#4 and 1-#5 2-#5	2-#4 2-#4 2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#5 and 1-#5	2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#6 2-#6
R PA	lg Bars-		Top	No size		#-01 #-01 #-01 #-01	12-#	12-#	12# 12# 12#	13 ## 13 ## 13 ## 13 ## 13 ##	12 15 15 15 15 15 15 15 15 15 15 15 15 15	141414
NEL	-Each			Ribs	Total S		5 4	4 4	444	ດດດດດດ		8999999 999999 99999
S	Directi	Midd	Bottom	Long Bars	lab De	27 27 27 27 27 27 27 27 27 27 27 27	44	77	24 24 24	***	***	***
	u	e Strip		Short Bars	bth = 3	24 24 24 24 24 24 24 24 24 24 24 24 24 2	#4	#4	# # #	***	#4 #4 85	# # # # # # # # # # # # #
			Top	No size	Ľ.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2-#	2-4-0		##### 0.000000	44444	******